Validation Procedures in Radiological Diagnostic Models. Neural Network and Logistic Regression
نویسندگان
چکیده
منابع مشابه
Validation procedures in radiologic diagnostic models. Neural network and logistic regression.
OBJECTIVE To compare the performance of two predictive radiologic models, logistic regression (LR) and neural network (NN), with five different resampling methods. METHODS One hundred sixty-seven patients with proven calvarial lesions as the only known disease were enrolled. Clinical and CT data were used for LR and NN models. Both models were developed with cross-validation, leave-one-out, a...
متن کاملComparison of logistic regression and neural network models in predicting the outcome of biopsy in breast cancer from MRI findings
Background: We designed an algorithmic model based on the logistic regression analysis and a non-algorithmic model based on the Artificial Neural Network (ANN). Materials and methods: The ability of these models was compared together in clinical application to differentiate malignant from benign breast tumors in a study group of 161 patients' records. Each patient’s record consisted of 6 subjec...
متن کاملThe Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan
One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...
متن کاملPredicting Early Transplant Failure: Neural Network Versus Logistic Regression Models
Cox’s proportional hazard model or logistic regression model has been the classical mathematical approach to predict transplant results, but artificial neural networks may offer better results. In order to compare both methods, a logistic regression and a neural network model were generated to predict early transplant failure assessed at 90 days. Methods: Medical charts from 701 liver transplan...
متن کاملComparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models
Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 1999
ISSN: 1556-5068
DOI: 10.2139/ssrn.199066